
Introduction to

Artificial Intelligence

Chapter 3

Solving Problems by Searching

Wei-Ta Chu (朱威達)

1

• Goal-based agents consider future actions and the desirability of

their outcomes. This chapter describes one kind of goal-based

agent called a problem-solving agent.

• In this chapter, we limit ourselves to the simplest kind of task

environment (PEAS: Performance, Environment, Actuators,

Sensors), for which the solution to a problem is always a fixed

sequence of actions.

Introduction

2

• The process of looking for a sequence of actions that reaches the

goal is called search. A search algorithm takes a problem as input

and returns a solution in the form of an action sequence. Once a

solution is found, the actions it recommends can be carried out.

This is called the execution phase.

Problem-Solving Agents

3

• An example problem: moving from Arad to Bucharest

Problem-Solving Agents

4

• A problem can be defined formally by five components

• Initial state – In(Arad)

• A description of the possible actions -- {Go(Sibiu), Go(Timisoara),

Go(Zerind)}

• A description of what each action does (transition model) --

RESULT(In(Arad), Go(Zerind)) = In(Zerind)

• The goal test, which determines whether a given state is a goal state --

In(Bucharest)

• A path cost function that assigns a numeric cost to each path

• A solution to a problem is an action sequence that leads from the initial state

to a goal state. Solution quality is measured by the path cost function.

Well-Defined Problems and Solutions

5

• 8-puzzle problem

Formulating Problems

6

• 8-queens problem

• A queen attacks any piece in the same row, column

or diagonal.

Formulating Problems

7

• Touring problems – route-finding problem

• Traveling salesperson problem – route-finding problem

• VLSI layout problem

• Robot navigation -- – route-finding problem

• …

Real-World Problems

8

• Search algorithms work by considering various possible action sequences. The

possible action sequences starting at the initial state form a search tree with

the initial state at the root; the branches are actions and the nodes correspond

to states in the state space of the problem.

Searching for Solutions

9

Infrastructure for Search Algorithms

10

• For each node n of the tree, we have a structure containing four

components

We can evaluate an algorithm’s performance in four ways:

• Completeness: Is the algorithm guaranteed to find a solution when there is

one?

• Optimality: Does the strategy find the optimal solution?

• Time complexity: How long does it take to find a solution?

• Space complexity: How much memory is needed to perform the search?

Measuring Problem-Solving Performance

11

• Uninformed search (also called blind search)

• The strategies have no additional information about states beyond that

provided in the problem definition. All they can do is generate successors and

distinguish a goal state from a non-goal state.

• All search strategies are distinguished by the order in which nodes are

expanded.

• Strategies that know whether one non-goal state is “more promising” than

another are called informed search or heuristic search strategies.

Uninformed Search Strategies

12

• Breadth-first search (BFS)

• The root node is expanded first,

then all the successors of the

root node are expanded next,

then their successors, and so on.

Uninformed Search Strategies

13

• Breadth-first search (BFS)

• Imagine searching a uniform tree where every state has b successors.

The root of the search tree generates b nodes at the first level, each of

which generates b more nodes, for a total of b2 at the second level.

Each of these generates b more nodes, yielding b3 nodes at the third

level, and so on.

• Suppose that the solution is at depth d. The total number of nodes

generated is

Uninformed Search Strategies

14

• Breadth-first search (BFS)

Uninformed Search Strategies

15

• Uniform-cost search (AI) or Dijkstra’s algorithm (Theoretical CS)

• Uniform-cost search expands the node n with the lowest path cost g(n).

• The algorithm tests for goals only when it expands a node, not when it

generates a node

Uninformed Search Strategies

16

(1)

expanded

generated

(2) expanded

generated

(3)

expanded

(1) 80+97=177
(2) 99+211=310
(3) 80+97+101=278

• Uniform-cost search (AI) or Dijkstra’s algorithm (Theoretical CS)

• Uniform-cost search is optimal in general. Uniform-cost search

expands nodes in order of their optimal path cost.

• Uniform-cost search is guided by path costs rather than depths, so its

complexity is not easily characterized in terms of b and d.

• Let be the cost of the optimal solution, and assume that every action

costs at least . Then the algorithm’s worst-case time and space

complexity is. , which can be much greater than .

• When all step costs are the same, uniform-cost search is similar to

breadth-first search.

Uninformed Search Strategies

17

• Depth-first search (DFS)

• Expands the deepest node in the current frontier of the search tree.

Uninformed Search Strategies

18

• Depth-first search (DFS)

• Time complexity: The time complexity of depth-first graph

search is bounded by the size of the state space. A depth-

first tree search, on the other hand, may generate all of the

nodes in the search tree, where m is the maximum depth of

any node. m can be much larger than d (the depth of the

shallowest solution).

Uninformed Search Strategies

19

• Depth-first search (DFS)

• Space complexity: A depth-first tree search needs to store

only a single path from the root to a leaf node, along with

the remaining unexpanded sibling nodes for each node on

the path.

• For a state space with branching factor b and maximum

depth m, DFS requires storage of only nodes.

Uninformed Search Strategies

20

• Depth-limited search

• Supply depth-first search with a predetermined depth limit

• Incompleteness

• Nonoptimal

• Sometimes, depth limits can be based on knowledge of the problem.

For example, if we check carefully, we would discover that any city

can be reached from any other city in at most 9 steps, i.e.,

leads to a more efficient depth-limited search.

Uninformed Search Strategies

21

• Iterative deepening DFS

• Iterative deepening search (or iterative deepening depth-first search) is

a general strategy, often used in combination with depth-first tree

search, that finds the best depth limit.

• It does this by gradually increasing the limit—first 0, then 1, then 2,

and so on—until a goal is found.

• Iterative deepening combines the benefits of depth-first and breadth-

first search. Like DFS, its memory requirements are modest: O(bd) to

be precise. Like BFS, it is complete when the branching factor is finite

and optimal when the path cost is a nondecreasing function of the depth.

Uninformed Search Strategies

22

• Iterative deepening DFS

• In general, iterative

deepening is the preferred

uninformed search method

when the search space is

large and the depth of the

solution is not known.

Uninformed Search Strategies

23

• Iterative deepening DFS

• Iterative deepening search may seem wasteful because states are

generated multiple times. It turns out this is not too costly.

• The reason is that in a search tree with the same (or nearly the same)

branching factor at each level, most of the nodes are in the bottom level,

so it does not matter much that the upper levels are generated multiple

times.

Uninformed Search Strategies

24

• Bidirectional search

• Run two simultaneous searches—one forward from the initial state and

the other backward from the goal—hoping that the two searches meet

in the middle.

• The motivation is that is much less than

• Bidirectional search is implemented by replacing the goal test with a

check to see whether the frontiers of the two searches intersect; if they

do, a solution has been found.

Uninformed Search Strategies

25

• Bidirectional search

• How to search backward? This is not easy.

• Let the predecessors of a state x be all those states that have x as a

successor. Bidirectional search requires a method for computing

predecessors. When all the actions in the state space are reversible, the

predecessors of x are just its successors.

• For the 8-puzzle and for finding a route in Romania, there is just one

goal state, so the backward search is very much like the forward search.

• If the goal is an abstract description, such as the goal that “no queen

attacks another queen”, then bidirectional search is difficult to use.

Uninformed Search Strategies

26

• Informed search strategy—one that uses problem-specific

knowledge hints about the location of goals—can find

solutions more efficiently than can an uninformed strategy.

• The hints come in the form of a heuristic function, denoted

h(n):

• h(n) = estimated cost of the cheapest path from the state at

node n to a goal state.

Informed (Heuristic) Search Strategies

27

• Greedy best-first search

• Expand the node that is closest to the goal, on the grounds that this is

likely to lead to a solution quickly. Thus, it evaluates nodes by using just

the heuristic function; that is, f(n) = h(n).

• In this example, use the straight-line distance heuristic

Informed (Heuristic) Search Strategies

28

• Greedy best-first search

• Greedy best-first search using

hSLD finds a solution without

ever expanding a node that is

not on the solution path;

hence, its search cost is

minimal.

• However, this solution is not

optimal

Informed (Heuristic) Search Strategies

29

• Greedy best-first search

• This solution is not optimal, however: the path via Sibiu and Fagaras to

Bucharest is 32 kilometers longer than the path through Rimnicu Vilcea

and Pitesti.

• Greedy best-first tree search is complete in finite state spaces, but not

in infinite ones.

• With a good heuristic function, the complexity can be reduced

substantially.

Informed (Heuristic) Search Strategies

30

• A* search

• The most widely known form of best-first search

• It evaluates nodes by combining g(n), the cost to reach the node, and

h(n), the cost to get from the node to the goal.

• g(n) gives the path cost from the start node to node n, and h(n) is the

estimated cost of the cheapest path from n to the goal.

• f(n) = g(n) + h(n) is the estimated cost of the cheapest solution through

n.

Informed (Heuristic) Search Strategies

31

• A* search: conditions for optimality – admissibility and

consistency

• The first condition we require for optimality is that h(n) be

an admissible heuristic. An admissible heuristic is one that

never overestimates the cost to reach the goal.

• Example: straight-line distance that we used in getting to

Bucharest

Informed (Heuristic) Search Strategies

32

• A* search: conditions for optimality – admissibility and consistency

• A second, slightly stronger condition called consistency (or sometimes

monotonicity) is required only for applications of A* to graph search.

• A heuristic h(n) is consistent if, for every node n and every successor n’

of n generated by any action a, the estimated cost of reaching the goal

from n is no greater than the step cost of getting to n’ plus the estimated

cost of reaching the goal from n’

This is a form of the general triangle inequality.

Informed (Heuristic) Search Strategies

33

• A* search

Informed (Heuristic) Search Strategies

34

• A* search

Informed (Heuristic) Search Strategies

35

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

