Introduction to

% éﬁ],’_ﬁg\f/)ﬁ 8,

National Cheng Kung Univ ty

Artificial Intelligence

Chapter 3
Solving Problems by Searching

Wei-Ta Chu (SR 2E)

Introduction

 Goal-based agents consider future actions and the desirability of
their outcomes. This chapter describes one kind of goal-based
agent called a problem-solving agent.

* In this chapter, we limit ourselves to the simplest kind of task
environment (PEAS: Performance, Environment, Actuators,
Sensors), for which the solution to a problem is always a fixed

sequence of actions.

oQ 2 g2 %
1931 National Cheng Kung U

ung University

Problem-Solving Agents

* The process of looking for a sequence of actions that reaches the
goal is called search. A search algorithm takes a problem as input
and returns a solution in the form of an action sequence. Once a
solution is found, the actions it recommends can be carried out.

This 1s called the execution phase.

oQ 2 g2 %
1931 National Cheng Kung U

ung University

Problem-Solving Agents

« An example problem: moving from Arad to Bucharest

Zerind

Arad

99 Fagaras

118 L] Vaslui

Rimnicu Vilcea

Timisoara

142
Pitesti

98

Hirsova

[] Mehadia Urziceni

75 86

Drobeta ||

Bucharest

Eforie

Craiova [] Giurgiu

Figure 3.2 A simplified road map of part of Romania.

Well-Defined Problems and Solutions

« A problem can be defined formally by five components

 Initial state — In(Arad)

A description of the possible actions -- {Go(Sibiu), Go(Timisoara),
Go(Zerind)}

« A description of what each action does (transition model) --
RESULT (In(Arad), Go(Zerind)) = In(Zerind)

« The goal test, which determines whether a given state is a goal state --
In(Bucharest)

« A path cost function that assigns a numeric cost to each path

« Asolution to a problem is an action sequence that leads from the initial state

to a goal state. Solution quality is measured by the path cost function.

% @A%x@% 2

nal Cheng Kung University

Formulating Problems |02t |2

5 6 3 4 5

« 8-puzzle problem
8 Il 3 || 1 6 (|l 7 | 8

Start State Goal State

States: A state description specifies the location of each of the eight tiles and the blank
in one of the nine squares.

Initial state: Any state can be designated as the initial state. Note that any given goal
can be reached from exactly half of the possible initial states (Exercise 3.4).

Actions: The simplest formulation defines the actions as movements of the blank space
Left, Right, Up, or Down. Different subsets of these are possible depending on where
the blank is.

Transition model: Given a state and action, this returns the resulting state; for example,
if we apply Left to the start state in Figure 3.4, the resulting state has the 5 and the blank
switched.

Goal test: This checks whether the state matches the goal configuration shown in Fig-
ure 3.4. (Other goal configurations are possible.)

Path cost: Each step costs 1, so the path cost is the number of steps in the path.

: vl BB =W
Formulating Problems e

IEI.IEI.

« 8-queens problem um i |
« A queen attacks any piece in the same row, column H B B N

| H H EH N

or diagonal. o P

e States: Any arrangement of 0 to 8 queens on the board is a state.

¢ Initial state: No queens on the board.

e Actions: Add a queen to any empty square.

e Transition model: Returns the board with a queen added to the specified square.
e Goal test: 8 queens are on the board, none attacked.

% :QJ,L%JZJ?P 18,

nal Cheng Kung nlversty

Real-World Problems

Touring problems — route-finding problem

Traveling salesperson problem — route-finding problem

VLSI layout problem

% :ﬁJJ_%JZ)? 18,

Robot navigation -- — route-finding problem

nal Cheng Kung Ui lversty

Searching for Solutions

 Search algorithms work by considering various possible action sequences. The
possible action sequences starting at the initial state form a search tree with
the initial state at the root; the branches are actions and the nodes correspond

to states in the state space of the problem.
(a) The initial state

(b) After expand
CSibiu D Climisoard) CZerind >

(c) After expanding Sibiu

% é!JJ_??iJZJ?P 18,

National Cheng Ku gUnlvrsty

Infrastructure for Search Algorithms

 For each node n of the tree, we have a structure containing four

components

e n.STATE: the state in the state space to which the node corresponds;
e n.PARENT: the node in the search tree that generated this node;
e 1. ACTION: the action that was applied to the parent to generate the node;

e n.PATH-COST: the cost, traditionally denoted by g(n), of the path from the initial state
to the node, as indicated by the parent pointers.

function CHILD-NODE(problem, parent, action) returns a node
return a node with
STATE = problem.RESULT(parent.STATE, action),
PARENT = parent, ACTION = action,
PATH-COST = parent.PATH-COST + problem.STEP-COST(parent.STATE, action)

PARENT

4 Node ACTION = Right

PATH-COST =6

STATE

Measuring Problem-Solving Performance

We can evaluate an algorithm’s performance in four ways:

« Completeness: Is the algorithm guaranteed to find a solution when there is
one?

« Optimality: Does the strategy find the optimal solution?

« Time complexity: How long does it take to find a solution?

« Space complexity: How much memory is needed to perform the search?

% é!JJ_??iJZJf 18,

nal Cheng Kung nlversty

Uninformed Search Strategies

» Uninformed search (also called blind search)

» The strategies have no additional information about states beyond that
provided in the problem definition. All they can do is generate successors and
distinguish a goal state from a non-goal state.

 All search strategies are distinguished by the order in which nodes are
expanded.

« Strategies that know whether one non-goal state is “more promising” than

another are called informed search or heuristic search strategies.

% é!JJ_%JZJf 18,

nal Cheng Kui gUnlversty

Uninformed Search Strategies

. (a) The initial state
« Breadth-first search (BFS)
* The root node is expanded first,
then all the successors of the

root node are expanded next,

then their successors, and so on.

>® A

Figure 3.12 Breadth-first search on a simple binary tree. At each stage, the node to be
expanded next is indicated by a marker.

Uninformed Search Strategies

« Breadth-first search (BFS)

* Imagine searching a uniform tree where every state has b successors.
The root of the search tree generates b nodes at the first level, each of
which generates b more nodes, for a total of b? at the second level.
Each of these generates b more nodes, yielding b2 nodes at the third
level, and so on.

» Suppose that the solution is at depth d. The total number of nodes

generated Is
b+ b2+ b3+ .- + b= 0%

% é!JJ_%JZJf 18,

nal Cheng Kung nlversty

Uninformed Search Strategies

« Breadth-first search (BFS)

Depth Nodes Time Memory
2 110 .11 milliseconds 107 kilobytes
4 11,110 11 milliseconds 10.6 megabytes
6 108 1.1 seconds 1 gigabyte
8 10% 2 minutes 103 gigabytes
10 1010 3 hours 10 terabytes
12 1012 13 days 1 petabyte
14 101 3.5 years 99 petabytes
16 1016 350 years 10 exabytes

Figure 3.13 Time and memory requirements for breadth-first search. The numbers shown
assume branching factor b = 10; 1 million nodes/second; 1000 bytes/node.

% é!]J_%JZ)f 18,

National Cheng Kung Uni lversty

Uninformed Search Strategies

* Uniform-cost search (Al) or Dijkstra’s algorithm (Theoretical CS)
» Uniform-cost search expands the node n with the lowest path cost g(n).
« The algorithm tests for goals only when it expands a node, not when it

generates a node

. (2) expanded
Wagaras
= (1) 80+97=177
(1\< (2) 99+211=310
Rimnicu Vilcea (3) 80+97+101=278
expanded

21

m\Pitesti
expanded \\\\n$*
i

generated

Bucharest

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty

Uninformed Search Strategies

* Uniform-cost search (Al) or Dijkstra’s algorithm (Theoretical CS)

» Uniform-cost search is optimal in general. Uniform-cost search
expands nodes in order of their optimal path cost.

« Uniform-cost search is guided by path costs rather than depths, so its
complexity is not easily characterized in terms of b and d.

» Let C*Dbe the cost of the optimal solution, and assume that every action
costs at least ¢ . Then the algorithm’s worst-case time and space
complexity is. O(b'*1¢*¢ly 'which can be much greater than »<.

* When all step costs are the same, uniform-cost search is similar to

breadth-first search.

% @A%x@% 2

nal Cheng Kung University

Uninformed Search Strategies

* Depth-first search (DFS)

« Expands the deepest node in the current frontier of the search tree.
»®

3{{\@
n
‘)@

o

@5/”“}?})

Uninformed Search Strategies

* Depth-first search (DFS)
* Time complexity: The time complexity of depth-first graph
search 1s bounded by the size of the state space. A depth-
first tree search, on the other hand, may generate all of the o™
nodes In the search tree, where m is the maximum depth of

any node. m can be much larger than d (the depth of the

shallowest solution).

Uninformed Search Strategies

* Depth-first search (DFS)

« Space complexity: A depth-first tree search needs to store
only a single path from the root to a leaf node, along with
the remaining unexpanded sibling nodes for each node on
the path.

 For a state space with branching factor b and maximum

depth m, DFS requires storage of only om) nodes.

Uninformed Search Strategies

* Depth-limited search
» Supply depth-first search with a predetermined depth limit ¢
* Incompleteness
* Nonoptimal
« Sometimes, depth limits can be based on knowledge of the problem.
For example, if we check carefully, we would discover that any city
can be reached from any other city in at most 9 steps, i.e., # =9

leads to a more efficient depth-limited search.

% é!JJ_??iJZJf 18,

nal Cheng Kung nlversty

Uninformed Search Strategies

 Iterative deepening DFS

« lterative deepening search (or iterative deepening depth-first search) is
a general strategy, often used in combination with depth-first tree
search, that finds the best depth limit.

« It does this by gradually increasing the limit—first O, then 1, then 2,
and so on—until a goal is found.

* lterative deepening combines the benefits of depth-first and breadth-
first search. Like DFS, its memory requirements are modest: O(bd) to
be precise. Like BFS, it is complete when the branching factor is finite

and optimal when the path cost is a nondecreasing function of the depth.

% @A%x@% 2

nal Cheng Kung University

Uninformed Search Strategies

 Iterative deepening DFS

 In general, iterative
deepening is the preferred
uninformed search method
when the search space is
large and the depth of the

solution is not known.

% é!]J_%JZ)f 18,

nal Cheng Kung Uni lversty

e P D
DD DD

D D

Figure 3.19 Four iterations of iterative deepening search on a binary tree.

Uninformed Search Strategies

 Iterative deepening DFS
* lterative deepening search may seem wasteful because states are

generated multiple times. It turns out this Is not too costly.
« The reason is that in a search tree with the same (or nearly the same)
branching factor at each level, most of the nodes are in the bottom level,

so it does not matter much that the upper levels are generated multiple

times.

% é!JJ_??iJZJf 18,

nal Cheng Kui gUnlversty

Uninformed Search Strategies

* Bidirectional search

* Run two simultaneous searches—one forward from the initial state and
the other backward from the goal—hoping that the two searches meet

In the middle.

« The motivation is that »%* + b%? is much less than b4
 Bidirectional search is implemented by replacing the goal test with a
check to see whether the frontiers of the two searches intersect; if they

do, a solution has been found.

s &49

Uninformed Search Strategies

 Bidirectional search

» How to search backward? This is not easy.

» Let the predecessors of a state x be all those states that have x as a
successor. Bidirectional search requires a method for computing
predecessors. When all the actions in the state space are reversible, the
predecessors of x are just its successors.

 For the 8-puzzle and for finding a route in Romania, there is just one
goal state, so the backward search is very much like the forward search.

» Ifthe goal is an abstract description, such as the goal that “no queen

attacks another queen”, then bidirectional search is difficult to use.

% é!JJ_??iJZJ?P 18,

nal Cheng Kung Unive! rsty

Informed (Heuristic) Search Strategies

 Informed search strategy—one that uses problem-specific
knowledge hints about the location of goals—can find
solutions more efficiently than can an uninformed strategy.
* The hints come in the form of a heuristic function, denoted
h(n):
* h(n) = estimated cost of the cheapest path from the state at

node n to a goal state.

Informed (Heuristic) Search Strategies

» Greedy best-first search
« Expand the node that is closest to the goal, on the grounds that this is
likely to lead to a solution quickly. Thus, it evaluates nodes by using just
the heuristic function; that is, f(n) = h(n).

* In this example, use the straight-line distance heuristic

Arad 366 Mehadia 241
Bucharest 0 Neamt 234
Craiova 160 Oradea 380
Drobeta 242 Pitesti 100
Eforie 161 Rimnicu Vilcea 193
Fagaras 176 Sibiu 253
Giurgiu 77 Timisoara 329
Hirsova 151 Urziceni 80
Iasi 226 Vaslui 199
Lugoj 244 Zerind 374

Figure 3.22 Values of hg;, p—straight-line distances to Bucharest.

Informed (Heuristic) Search Strategies

(a) The initial state
» Greedy best-first search
(b) After expanding Arad C Arad D
« Greedy best-first search using A
he p finds a solution without

(c¢) After expanding Sibiu

ever expanding a node that is

not on the solution path;

hence, its search cost is
minimal.
 However, this solution is not

optimal

% é!]J_%JZ)f 18,

National Cheng Kung Uni lversty

Informed (Heuristic) Search Strategies

* Greedy best-first search
 This solution is not optimal, however: the path via Sibiu and Fagaras to
Bucharest is 32 kilometers longer than the path through Rimnicu Vilcea
and Pitesti.
» Greedy best-first tree search is complete in finite state spaces, but not
In infinite ones.
» With a good heuristic function, the complexity can be reduced

substantially.

% é!JJ_??iJZJf 18,

nal Cheng Kung nlversty

Informed (Heuristic) Search Strategies

« A*search
* The most widely known form of best-first search
* It evaluates nodes by combining g(n), the cost to reach the node, and
h(n), the cost to get from the node to the goal.
* g(n) gives the path cost from the start node to node n, and h(n) is the
estimated cost of the cheapest path from n to the goal.

« f(n) =g(n) + h(n) is the estimated cost of the cheapest solution through

n.

% é!JJ_%JZJf 18,

nal Cheng Kung nlversty

Informed (Heuristic) Search Strategies

« A* search: conditions for optimality — admissibility and
consistency
 The first condition we require for optimality is that h(n) be
an admissible heuristic. An admissible heuristic is one that
never overestimates the cost to reach the goal.

« Example: straight-line distance that we used In getting to

Bucharest

Informed (Heuristic) Search Strategies

« A* search: conditions for optimality — admissibility and consistency

» A ssecond, slightly stronger condition called consistency (or sometimes
monotonicity) is required only for applications of A* to graph search.

* A heuristic h(n) is consistent if, for every node n and every successor »’
of n generated by any action a, the estimated cost of reaching the goal
from n is no greater than the step cost of getting to n’ plus the estimated
cost of reaching the goal from n’

h(n) <c(n,a,n’) + h(n’)

This is a form of the general triangle inequality.

% é!JJ_??iJZJ?P 18,

nal Cheng Kung Unive! rsty

Informed (Heuristic) Search Strategies

o *
A* search (a) The initial state
366=0+366
(b) After expanding Arad Arad >
ST Cimisoard CZerni>
393=140+253 447=118+329 449=75+374

(¢) After expanding Sibiu

447=118+329 449=75+374

646=280+366 415=239+176 671=291+380 413=220+193

(d) After expanding Rimnicu Vilcea

449=75+374

291+380

646=280+366 415=239+176 671=
% :QJJ_%JZ)?P 8

National Cheng Kung Uni lversty

526=366+160 417=317+100 553=300+253

Informed (Heuristic) Search Strategies

 A* search

(e) After expanding Fagaras C Arad D

CSibiu > Cimisoarg) CZerind

447=118+329 449=75+374

Carad > agaras> COradea amnicu Viked

646=280+366 671=291+380

CSibiu D QucharesD Clraiovad P CPitesti D C Sibiu 3

591=338+253 450=450+0 526=366+160 417=317+100 553=300+253

(f) After expanding Pitesti Arad D

CSibiu > Cimisoargy Cerind 3

447=118+329 449=75+374

646=280+366 671=291+380

CSibiu D QucharesD CCraiovad Pitesti > C Sibiu 2

591=338+253 450=450+0 526=366+160 553=300+253

% B3z ko > @D Cricn> eV

418=418+0 615=455+160 607=414+193

National Cheng Kung Umversnty

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

